Friday, September 6, 2013

Bilangan Bulat

A. Sifat-Sifat Pengerjaan Hitung pada Bilangan Bulat.

1. Sifat Komutatif (Pertukaran).

a. Sifat komutatif pada penjumlahan
Andi mempunyai 5 kelereng berwarna merah dan 3 kelereng berwarna hitam. Budi mempunyai 3 kelereng berwarna merah dan 5 kelereng berwarna hitam. Samakah jumlah kelereng yang dimiliki Andi dan Budi Ternyata jumlah kelereng Andi sama dengan jumlah kelereng Budi. Jadi, 5 + 3 = 3 + 5.
Cara penjumlahan seperti ini menggunakan sifat komutatif. Secara umum, sifat komutatif pada penjumlahan dapat ditulis sebagai berikut.





b. Sifat komutatif pada perkalian
Jumlah kelereng Andi dan Budi sama, yaitu 8 butir. Kelereng Andi dimasukkan ke empat kantong plastik. Setiap kantong berisi 2 butir. Kelereng Budi dimasukkan ke dua kantong plastik. Setiap kantong berisi 4 butir. 



















Kelereng Andi dan Budi dapat ditulis sebagai berikut.

Kelereng Andi = 2 + 2 + 2 + 2 = 4 × 2 = 8
Kelereng Budi = 4 + 4 = 2 × 4 = 8
Jadi, 4 × 2 = 2 × 4.

Cara perkalian seperti ini menggunakan sifat komutatif pada perkalian. Secara umum, sifat komutatif pada perkalian dapat ditulis:





2. Sifat Asosiatif (Pengelompokan).

a. Sifat asosiatif pada penjumlahan
Andi mempunyai 2 kotak berisi kelereng. Kotak I berisi 3 kelereng merah dan 2 kelereng hitam. Kotak II berisi 4 kelereng putih. Budi juga mempunyai 2 kotak berisi kelereng. Kotak I berisi 3 kelereng merah. Kotak II berisi 2 kelereng hitam dan 4 kelereng putih. Samakah jumlah kelereng yang dimiliki Andi dan Budi?

Perhatikan gambar di bawah ini!













Ternyata jumlah kelereng yang dimiliki Andi sama dengan jumlah kelereng yang dimiliki Budi.
Jadi, (3 + 2) + 4 = 3 + (2 + 4).
Cara penjumlahan seperti ini menggunakan sifat asosiatif pada penjumlahan. Secara umum, sifat asosiatif pada penjumlahan dapat ditulis:





b. Sifat asosiatif pada perkalian
Andi mempunyai 2 kotak mainan. Setiap kotak diisi 3 bungkus kelereng. Setiap bungkus berisi 4 butir kelereng. Berapa jumlah kelereng Andi? Ada dua cara yang dapat digunakan untuk menghitung jumlah kelereng Andi. 

- Cara pertama menghitung banyak bungkus. Kemudian, hasilnya dikalikan banyak kelereng tiap bungkus.
Banyak bungkus × banyak kelereng tiap bungkus = (3 bungkus + 3 bungkus) × 4 butir = (3 + 3) × 4 
= (2 × 3) × 4 = 24 butir.

- Cara kedua menghitung banyak kelereng setiap kotaknya dahulu kemudian hasilnya dikalikan banyak kotak.
Banyak kotak × banyak kelereng
= 2 × (4 + 4 + 4)
= 2 × (3 × 4) = 24 butir

Perhitungan cara I: (2 × 3) × 4.
Perhitungan cara II: 2 × (3 × 4).

Hasil perhitungan dengan kedua cara adalah sama.
Jadi, (2 × 3) × 4 = 2 × (3 × 4).
Cara perkalian seperti ini menggunakan sifat asosiatif pada perkalian.
Secara umum, sifat asosiatif pada perkalian dapat ditulis:



3. Sifat Distributif (Penyebaran)
Perhatikan contoh berikut!

Contoh 1:
Angka pengali disatukan.
3 x 4 dan 3 x 6 mempunyai angka pengali
yang sama yaitu 3









Penghitungan dilakukan dengan cara menjumlah kedua angka yang dikalikan (4 + 6). Kemudian hasilnya dikalikan dengan angka pengali (3).
3 × (4 + 6) = 3 × 10 = 30.
Mengapa cara ini digunakan.
Karena menghitung 3 × (4 + 6) = 3 × 10 lebih mudah daripada menghitung (3 × 4) + (3 × 6).

Contoh 2:

Angka pengali dipisahkan.
15 x (10+2) mempunyai angka pengali 15








Penghitungan dilakukan dengan cara kedua angka yang dijumlah (10 dan 2) masing-masing dikalikan dengan angka pengali (15), kemudian hasilnya dijumlahkan.
15 × (10 + 2) = (15 × 10) + (15 × 2)
= 150 + 30
= 180

Kedua contoh di atas merupakan penjumlahan yang menggunakan sifat distributif.
Benarkah bahwa (5 × 13) – (5 × 3) = 5 × (13 – 3)?

(5 × 13) – (5 × 3) mempunyai angka pengali yang sama, yaitu 5. Angka pengali disatukan menjadi 5 × (13 – 3). Diperoleh: (5 × 13) – (5 × 3) = 5 × (13 – 3)
Contoh di atas merupakan pengurangan dengan sifat distributif.

Cara ini juga untuk mempermudah penghitungan karena menghitung (15 × 10) + (15 × 2) = 150 + 30 lebih mudah daripada menghitung 15 × (10 + 2) = 15 × 12.
Cara penghitungan seperti di atas menggunakan sifat distributif pada penjumlahan dan pengurangan. Secara umum, sifat distributif pada penjumlahan dan pengurangan dapat ditulis:





4. Menggunakan Sifat Komutatif, Asosiatif, dan Distributif

Sifat komutatif, asosiatif, dan distributif dapat digunakan untuk memudahkan perhitungan.
Perhatikan contoh berikut.

1. Menghitung 5 × 3 × 6
Cara 1:
5 × 3 × 6 = 5 × 6 × 3
= (5 × 6) × 3
= 30 × 3
= 90
Cara 2:
5 × 3 × 6 = 3 × 5 × 6
= 3 × (5 × 6)
= 3 × 30
= 90

2. Menghitung 8 × 45
Cara 1: menggunakan sifat distributif pada penjumlahan
8 × 45 = 8 × (40 + 5)
= (8 × 40) + (8 × 5)
= 320 + 40
= 360
Cara 2: menggunakan sifat distributif pada pengurangan
8 × 45 = 8 × (50 – 5)
= (8 × 50) – (8 × 5)
= 400 – 40
= 360


No comments:

Post a Comment